Tutorial on the usage of SCP tool
=================================
Here two examples on how to use the SCP class for different polymers
will be illustrated.
Before starting any analysis, load the neccesary modules for this class.
.. code:: ipython3
from utils_mda import MDA_input
#from pysoftk.pol_analysis.tools.utils_mda import MDA_input
from utils_tools import *
#from pysoftk.pol_analysis.tools.utils_tools import *
from clustering import SCP
#from pysoftk.pol_analysis.clustering import SCP
import numpy as np
import pandas as pd
Branched topology example
-------------------------
1. Select your trajectory files, it is recommended to use a tpr file for
the topology and xtc file for the trajectory. Note that any
MDAnalysis supported file can be used here.
.. code:: ipython3
topology='data/short_movie_branched.tpr'
trajectory='data/short_movie_branched.xtc'
This is how the branched polymer looks:
.. figure:: images/branched_screenshot.png
:alt: Image Alt Text
2. We need to select the atoms on which the clustering will be applied.
In this case this branched polymer has the hydrophobic block at the
end of each arm. Since this polymer is amphiphilic and it is
simulated in a box with water, it will form micelles. This micelle
will be driving by the hydrophobic effect, meaning that polymers will
be interacting via their hydrophobic blocks (to form the micelle).
Therefore, the atoms that we decide to choose are the atoms in the
middle of each hydrophobic block (so 3 atoms, 1 per arm).
.. code:: ipython3
atom_names = ['C02B', 'C01K', 'C02N']
3. We need to define the cluster cutoff. This will be the value use to
determine if two polymers are part of the same micelle. Selecting
this value may be an iterative process, but we suggest to use values
ranging from 10 to 12 Å. But again, this will depend on the system
being simulated.
.. code:: ipython3
cluster_cutoff = 12
4. Finally, before running the SCP tool, we need define the output path.
Also, we need to define the start frame, stop frame and step between
frames that we want to run the analysis on.
.. code:: ipython3
results_name='data/pictures_tutorial/branched_scp_result'
start=0
stop=10001
step=1
5. Now we are ready to run the SCP tool!
.. code:: ipython3
c = SCP(topology, trajectory).spatial_clustering_run(start, stop, step, atom_names, cluster_cutoff, results_name)
.. parsed-literal::
100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 9.86it/s]
.. parsed-literal::
The file data/pictures_tutorial/branched_scp_result.parquet has been successfully created.
Function spatial_clustering_run Took 1.5952 seconds
6. To visualize the result we can load the parquet file in this way:
.. code:: ipython3
df_results = 'data/pictures_tutorial/branched_scp_result.parquet'
df = pd.read_parquet(df_results)
df
.. raw:: html
|
time |
micelle_resids |
micelle_size |
0 |
0.0 |
[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 1... |
[20] |
1 |
500000.0 |
[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 1... |
[20] |
2 |
1000000.0 |
[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 17, 1... |
[16, 1, 1, 1, 1] |
Cyclic topology example
-----------------------
This is how the cyclic polymer looks:
.. figure:: images/cyclic_screenshot.png
:alt: Image Alt Text
We can follow the same steps applied on the branched example
.. code:: ipython3
topology='data/short_movie_cyclic.tpr'
trajectory='data/short_movie_cyclic.xtc'
results_name='data/pictures_tutorial/cyclic_scp_result'
cluster_cutoff = 12
start=0
stop=10001
step=1
However, since the topology is different, the atom selection will be
different to the branched example, even though they are made from the
same atoms. Since the polymer has a ring structure, we can just select
the central atom of the hydrophobic block, as this is the only part of
the polymer that will be interacting closely with the other hydrphobic
blocks.
.. code:: ipython3
atom_names=['C02T']
Now, we can run the SCP tool
.. code:: ipython3
c = SCP(topology, trajectory).spatial_clustering_run(start, stop, step, atom_names, cluster_cutoff, results_name)
.. parsed-literal::
100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 141.75it/s]
.. parsed-literal::
The file data/pictures_tutorial/cyclic_scp_result.parquet has been successfully created.
Function spatial_clustering_run Took 0.1356 seconds
To visualize the output
.. code:: ipython3
df_results = 'data/pictures_tutorial/cyclic_scp_result.parquet'
df = pd.read_parquet(df_results)
df
.. raw:: html
|
time |
micelle_resids |
micelle_size |
0 |
0.0 |
[[1, 2, 3, 4, 6, 7, 8, 11, 12, 13, 14, 15, 17,... |
[15, 4, 1] |
1 |
500000.0 |
[[1, 3, 12], [2, 4, 6, 7, 13, 14, 15, 17, 18, ... |
[3, 11, 5, 1] |
2 |
1000000.0 |
[[1, 3, 5, 8, 10, 12, 16], [2, 4, 6, 7, 13, 14... |
[7, 11, 1, 1] |