Tutorial on the usage of intrinsic_density_micelle tool ======================================================= Here, two examples on how to use the intrinsic_density_micelle tool for the calculation of the distribution of components of a micelle. First we will show how to use intrinsic_density to calculate the density of the hydrophobic block of the polymer. Then we will show how to use intrinsic_density_water to calculate the spherical density of the water in the simulation spherical_density tool ---------------------- Before starting any analysis, load the neccesary modules for this class. .. code:: ipython3 from utils_mda import MDA_input #from pysoftk.pol_analysis.tools.utils_mda import MDA_input from utils_tools import * #from pysoftk.pol_analysis.tools.utils_tools import * from clustering import SCP #from pysoftk.pol_analysis.clustering import SCP from make_micelle_whole import micelle_whole #from pysoftk.pol_analysis.make_micelle_whole import micelle_whole from intrinsic_density_micelle import intrinsic_density #from pysoftk.pol_analysis.intrinsic_density_micelle import intrinsic_density import numpy as np import pandas as pd 1. Select your simulation files, it is recommended to use a tpr file for the topology and xtc file for the trajectory. .. code:: ipython3 topology='data/intrinsic_density_movie.tpr' trajectory='data/intrinsic_density_movie.xtc' 2. Run the clustering .. code:: ipython3 results_name='data/pictures_tutorial/cyclic_intrinsic_scp_result' cluster_cutoff = 12 start=0 stop=10001 step=1 atom_names=['C02T'] c = SCP(topology, trajectory).spatial_clustering_run(start, stop, step, atom_names, cluster_cutoff, results_name) #load the results from SCP resids_total='data/pictures_tutorial/cyclic_intrinsic_scp_result.parquet' .. parsed-literal:: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 11/11 [00:00<00:00, 22.20it/s] .. parsed-literal:: The file data/pictures_tutorial/cyclic_intrinsic_scp_result.parquet has been successfully created. Function spatial_clustering_run Took 2.2583 seconds 3. Obtain the largest micelle from the clustering pandas dataframe .. code:: ipython3 largest_micelle_resids = micelle_whole(topology, trajectory).obtain_largest_micelle_resids(resids_total) 4. ‘largest_micelle_resids’ is a np.array with the resids of the molecules that belong to the same cluster of the steps of the trajectory where SCP was ran. .. code:: ipython3 largest_micelle_resids .. parsed-literal:: [array([ 1, 2, 3, 4, 6, 7, 8, 11, 12, 13, 14, 15, 17, 18, 19]), array([ 2, 4, 6, 7, 13, 14, 15, 17, 18, 19, 20]), array([ 2, 4, 6, 7, 11, 13, 14, 15, 17, 18, 19, 20]), array([ 2, 4, 6, 7, 13, 14, 15, 17, 18, 19, 20]), array([ 2, 4, 6, 7, 13, 14, 15, 17, 18, 19, 20]), array([ 2, 4, 6, 7, 13, 14, 15, 17, 18, 19, 20]), array([ 2, 4, 6, 7, 13, 14, 15, 17, 18, 19, 20]), array([ 2, 4, 6, 7, 13, 14, 15, 17, 18, 19]), array([ 2, 4, 6, 7, 13, 14, 15, 17, 18, 19, 20]), array([ 2, 4, 6, 7, 13, 14, 15, 17, 18, 19, 20]), array([ 2, 4, 6, 7, 13, 14, 15, 17, 18, 19, 20])] Now, let’s obtain the coordinates of the largest micelle made whole across the periodic boundary conditions (PBC). 5. Let’s define the resname of the molecules that we want to reconstruct with the make_whole function. More than one resname can be inputted. Note that it should be the resname of the molecules of the largest_micelle array. .. code:: ipython3 resname=['LIG'] 6. Also, the user needs to define the start, step and final step of frames in which the user wants to run the analysis on. Note that they need to be the same as the ones you ran the SCP clustering on. .. code:: ipython3 start=0 stop=10000 step=1 7. Obtain the whole coordinates of the micelle. This is key to perform the densitity calculation taking properly into account the PBC .. code:: ipython3 atom_pos = micelle_whole(topology, trajectory).running_make_cluster_whole(resname, largest_micelle_resids, start, stop, step) .. parsed-literal:: 0%| | 0/11 [00:00